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 Abstract
 A number of recent studies in animals and humans 
have linked energy regulation and the circadian clock at the 
molecular, physiological and behavioural levels, concluding 
that disruption of clock genes results in metabolic 
dysregulation. The search to understand the causes of 
obesity and diabetes and the development of new therapeutic 
strategies have mostly focused on caloric intake and energy 
balance. In this review, we present a global overview of the 
circadian clock as a critical interface between nutrition and 
homeostasis.

 Key words: Nutrition, clock genes, circadian 
rhythms.

INTRODUCTION

 The circadian system is composed of 
endogenous oscillators that generate daily rhythms of 
approximate 24h. In mammals, this biological clock 
controls different aspects of metabolism and physiology 
like body temperature, cycles of wakefulness and 
sleep, feeding habits and metabolism. The master clock 
is situated in the suprachiasmatic nucleus (SCN) in 
the hypothalamus which generates circadian rhythms 
throughout the body, conferring the body with the 
ability to adapt to variations in its environment (1-3).

 The molecular clock
 The circadian clock is composed of a 
transcriptional - translational feedback loop that 
generates these circadian rhythms through specific 
clock genes. Genes in this loop include CLOCK , Brain-
muscle-Arnt like 1 (Bmal1), Period (PER1), Period2 
(PER2), Period 3 (PER3), Cryptochrome1 (CRY1) and 
Cryptochrome2 (CRY2). CLOCK and BMAL1 form a 
heterodimer that binds to E-box sequences and activates 

the transcription of PER and CRY genes which drive 
a negative limb, dimerize and translocate into the 
nucleus to inhibit CLOCK and BMAL1 and reduce 
the transcription of their own genes. Another negative 
limb involves nuclear receptors ROR-alpha and REV-
ERB-alpha, stimulating and repressing BMAL1 (4-7). 
The SCN is stimulated by light, which is the strongest 
entraining signal and coordinates peripheral clocks via 
autonomic innervations and neuroendocrine signals (8-
10). These independent clocks are found in peripheral 
tissues such as the pancreas, muscles, the liver, the gut, 
and adipose tissue. Furthermore, feeding and specific 
nutrients are the main factors in entraining and help 
synchronize peripheral clocks (11-14).

 Circadian rhythms and metabolism
 The circadian clock has been reported to 
regulate metabolism and energy homeostasis by 
modulating the expression and activity of diverse 
metabolic enzymes and transport systems involved 
in glucose and lipid metabolism. In addition, several 
hormones implicated in metabolism exhibit circadian 
oscillations, such as insulin, glucagon, adiponectin, 
cortisol, leptin and ghrelin (15-17).

 Circadian rhythms and metabolic diseases: 
obesity and diabetes
 Obesity and type 2 diabetes have reached 
epidemic proportions. Obesity is an important factor 
that contributes to the onset and progression of T2DM 
(18, 19). In modern society, the human biological clock 
is commonly altered by changes in sleep patterns, 
nocturnal work shifts and exposure to artificial light 
at night, leading to metabolic anomalies associated 
with the etiology of obesity and type 2 diabetes (20, 
21). Although genetic predisposition plays a relevant 
role in developing diabetes, environmental factors 
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have emerged as significantly higher predictors of 
this disease (22). Regulation of glucose homeostasis 
provides an excellent example of how the circadian 
system exerts metabolic control. In this sense, plasma 
glucose levels are tightly controlled throughout a 
24-h period in mice and healthy individuals (23, 24). 
In animal models, mutations of clock genes in the 
pancreas lead to the loss of circadian rhythms of insulin 
secretion and glucose tolerance (25, 26). In humans, 
mutations and polymorphisms in clock genes are 
linked to obesity and metabolic syndrome (27, 28). Ex 
vivo analysis of the human peripheral visceral adipose 
tissue, the key endocrine tissue in insulin-resistance 
and type 2 diabetes, showed that peripheral clock 
genes oscillation is altered in the visceral obese adipose 
tissue, being the highest in metabolic syndrome (29). 

 Nutrients and feeding
 Many studies have shown that changes in the 
patterns of feeding, food composition, and altered 
meal schedules can directly and indirectly affect the 
circadian clock. 
 Studies in animals consuming a hypercaloric 
diet during daylight hours showed a pronounced 
increase in weight gain in mice, disrupting both 
central and peripheral clocks (30, 31). On the other 
hand, restricting feeding time in mice on a high-fat 
diet resulted in lower body weight and improvements 
in glucose and lipid homeostasis by affecting only 
peripheral clocks (32, 33). As soon as food availability 
returned to normal, the SCN clock, whose phase remains 
unaffected, reset the peripheral oscillators (34). A high-
fat diet, rather than the development of obesity, appears 
to initiate reprogramming of the circadian clock (35). 
 In this context, recently a new concept, 

chrononutrition, has been used to refer to the 
connection between the biological clock and feeding, by 
modulating the time of food ingestion and absorption, 
as a consequence, changing the entraining of the 
endogenous clock with different dietary components. 
(36).
 In conclusion, accumulating evidence supports 
a role for the circadian clock in the development of 
metabolic disease. Environmental factors influence 
the circadian clock such as nutritional habits. Adapting 
the clock to nutrient status could be advantageous, 
as an understanding of the molecular mechanisms 
involved could help develop novel chronotheraputical 
approaches for the prevention and treatment of these 
pathologies. 
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