January - March 2005, Volume 1, Issue 1
Endocrine Care
This Article
Services
Google Scholar
PubMed
Acta Endocrinologica (Buc)
Coculescu M, Anghel R, Badiu C, Caragheorgheopol A, Hortopan D, Dumitrascu A, Virtej I, Trifanescu R, Capatana C, Voicu D
Additional effects of radiotherapy to dopamine agonists in the treatment of macroprolactinomas
Acta Endo (Buc) 2005, 1 (1): 43-59doi: 10.4183/aeb.2005.43
INTRODUCTION: The aim of our study was to evaluate the cure rate of macroprolactinomas treated for a long term (> 4 years) or a short term (<4 years) with dopamine agonists (DA) alone or combined with radiotherapy (RT). Sometimes pituitary\r\nsurgery was performed.\r\nMATERIAL AND METHODS: We performed a retrospective study in 111 patients with macroprolactinomas, hospitalized in the Institute of Endocrinology, Bucharest, between 1978-2005. There were two groups, according to the length of DA therapy: group\r\nA =41 patients, treated more than 4 years and group B =70 patients, treated less than 4 years. Overall, 25 patients underwent additional radiotherapy, 13 in group A and 12 in group B. 28 patients were submitted to pituitary surgery, 9 in group A and 19 in group B.\r\nRESULTS: The cure rate (i.e. normalization of prolactin=PRL level and absence or minimal residual tumor mass, stable minimum 2 years after DA withdrawal) was 5/41 (12.1%) in group A and none in group B. 48 out of 111 patients achieved significant improvement (serum prolactin level less than 20 ng/ml and tumor shrinkage more than 50%) during DA therapy, but not after DA withdrawal: 17/41patients (41.5%) in group A and in 31/70 patients (44.3%) in group B, p=NS. Radiotherapy produced an additional improvement: in serum PRL levels only in group A, in 4/13 patients- 2/8 patients responsive to DA therapy and 2/5 patients resistant to DA therapy. In group B, the 3 patients resistant to DA submitted to radiotherapy were evaluated before the interval necessary for maximal effect of radiotherapy, but in 4/9 patients responsive to DA, we noticed further reduction in tumor volume, 2/4 progressing from mild to significant tumor shrinkage and ? progressing from no shrinkage to mild shrinkage. After radiotherapy, the medium prolactin level was 5.1 ng/ml in 10 patients from both groups on low bromocriptine (BRC) dose (7.5 mg/day), significantly less than in patients without radiotherapy, i.e. than in 19 patients from group A (serum PRL 49.5 ng/ml, p=0.02) and in 29 patients from group B (serum PRL 30.3 ng/ml, p=0.01). So, the daily BRC dose could safely decrease from 30 mg/day to 7.5 mg/day in those patients previously submitted to radiotherapy. Among 23 patients resistant to initial DA treatment, only 8 patients were submitted to radiotherapy, 2 became responsive to DA thereafter and 2 others obtained a significant decrease of prolactin levels.\r\nCONCLUSIONS: The overall cure rate is quite low in prolactinomas and it was noticed only after long-term treatment with dopamine agonists; it was improved up to 12.1% by the additional high voltage radiotherapy, useful even in DA resistant cases. The addition of radiotherapy is indicated for the cure of most prolactinomas.
Keywords: prolactinoma, radiotherapy, cure, dopamine agonists
Correspondence: Mihail Gr. Coculescu, Department of Endocrinology, ?Carol Davila? University of Medicine and Pharmacy, 34-36 Bd. Aviatorilor, Code 011863, Bucharest, Tel/Fax: + 4021 3198718, e-mail: m.coculescu@uni-davila.ro
References:
1. Coculescu M, Simionescu N, Oprescu M, Alessandrescu D. Bromocriptine treatment of pituitary adenomas. Evaluation of withdrawal effect. Revue Roumaine Med Endocrinol 1982; 21:157-168.
2. Molitch M. Prolactinoma. In: Melmed S, editor. The pituitary. Toronto, New York: Blackwell Publishing, 2002: 455-495.
3. Thorner MO, Perryman RL, Rogol AD, Conway BP, MacLeod RM, Login IS et al. Rapid changes of prolactinoma volume after withdrawal and reinstitution of bromocriptine. J Clin Endocrinol Metab 1981; 53(3):480-483.
[CrossRef]
4. Colao A, di Sarno A, Landi ML, Cirillo S, Sarnacchiaro F, Facciolli G et al. Long-term and lowdose treatment with cabergoline induces macroprolactinoma shrinkage. J Clin Endocrinol Metab 1997; 82(11):3574-3579.
[CrossRef]
5. Coculescu M, Hudita D, Gussi I, Gheorghiu M, Hortopan D, Caragheorgheopol A. Tumor size changes in prolactinomas treated with minimum bromocriptine throughout gestation. Gynecological Endocrinology 2000; 14(suppl 2).
6. Badiu C, Ham J, Carnu R, Coculescu M. TRH synthesis in ?mute? thyrotropinomas: cause-effect or coincidence? J Cell Mol Med 2001; 5(1):88-91.
[CrossRef]
7. Coculescu M. Neuroendocrinologie clinica. Bucuresti: Editura Stiintifica si Enciclopedica, 1986.
8. Colao A, di Sarno A, Cappabianca P, di Somma C, Pivonello R, Lombardi G. Withdrawal of longterm cabergoline therapy for tumoral and nontumoral hyperprolactinemia. N Engl J Med 2003; 349(21):2023-2033.
[CrossRef]
9. Molitch ME. Dopamine resistance of prolactinomas. Pituitary 2003; 6(1):19-27.
[CrossRef]
10. Molitch ME. Medical management of prolactin-secreting pituitary adenomas. Pituitary 2002; 5(2):55-65.
[CrossRef]
11. di Sarno A, Landi ML, Cappabianca P, Di Salle F, Rossi FW, Pivonello R et al. Resistance to cabergoline as compared with bromocriptine in hyperprolactinemia: prevalence, clinical definition, and therapeutic strategy. J Clin Endocrinol Metab 2001; 86(11)
[CrossRef]
12. Losa M, Mortini P, Barzaghi R, Gioia L, Giovanelli M. Surgical treatment of prolactin-secreting pituitary adenomas: early results and long-term outcome. J Clin Endocrinol Metab 2002; 87(7):3180- 3186.
[CrossRef]
13. Acquati S, Pizzocaro A, Tomei G, Giovanelli M, Libe R, Faglia G et al. A comparative evaluation of effectiveness of medical and surgical therapy in patients with macroprolactinoma. J Neurosurg Sci 2001; 45(2):65-69.
14. Bevan JS, Webster J, Burke CW, Scanlon MF. Dopamine agonists and pituitary tumor shrinkage. Endocr Rev 1992; 13(2):220-240.
15. Passos VQ, Souza JJ, Musolino NR, Bronstein MD. Long-term follow-up of prolactinomas: normoprolactinemia after bromocriptine withdrawal. J Clin Endocrinol Metab 2002; 87(8):3578-3582.
[CrossRef]
16. Sobrinho LG, Nunes MC, Santos MA, Mauricio JC. Radiological evidence for regression of prolactinoma after treatment with bromocriptine. Lancet 1978; 2(8083):257-258.
[CrossRef]
17. McGregor AM, Scanlon MF, Hall K, Cook DB, Hall R. Reduction in size of a pituitary tumor by bromocriptine therapy. N Engl J Med 1979; 300(6):291-293.
[CrossRef]
18. Orrego JJ, Chandler WF, Barkan AL. Rapid re-expansion of a macroprolactinoma after early discontinuation of bromocriptine. Pituitary 2000; 3(3):189-192.
[CrossRef]
19. Gen M, Uozumi T, Ohta M, Ito A, Kajiwara H, Mori S. Necrotic changes in prolactinomas after long term administration of bromocriptine. J Clin Endocrinol Metab 1984; 59(3):463-470.
[CrossRef]
20. Colao A, di Sarno A, Landi ML, Scavuzzo F, Cappabianca P, Pivonello R et al. Macroprolactinoma shrinkage during cabergoline treatment is greater in naive patients than in patients pretreated with other dopamine agonists: a prospective study in 110 patie
[CrossRef]
21. Delgrange E, Maiter D, Donckier J. Effects of the dopamine agonist cabergoline in patients with prolactinoma intolerant or resistant to bromocriptine. Eur J Endocrinol 1996; 134(4):454-456.
[CrossRef]
22. Webster J, Piscitelli G, Polli A, Ferrari CI, Ismail I, Scanlon MF. A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. Cabergoline Comparative Study Group. N Engl J Med 1994; 331(14):904-909.
[CrossRef]
23. Colao A, di Sarno A, Sarnacchiaro F, Ferone D, Di Renzo G, Merola B et al. Prolactinomas resistant to standard dopamine agonists respond to chronic cabergoline treatment. J Clin Endocrinol Metab 1997; 82(3):876-883.
[CrossRef]
24. Saveanu A, Morange-Ramos I, Gunz G, Dufour H, Enjalbert A, Jaquet P. A luteinizing hormonealpha- subunit- and prolactin-secreting pituitary adenoma responsive to somatostatin analogs: in vivo and in vitro studies. Eur J Endocrinol 2001; 145(1):35-41.
[CrossRef]
25. Ma W, Ikeda H, Yoshimoto T. Clinicopathologic study of 123 cases of prolactin-secreting pituitary adenomas with special reference to multihormone production and clonality of the adenomas. Cancer 2002; 95(2):258-266.
[CrossRef]
26. Senovilla L, Nunez L, de Campos JM, de Luis DA, Romero E, Sanchez A et al. Multifunctional cells in human pituitary adenomas: implications for paradoxical secretion and tumorigenesis. J Clin Endocrinol Metab 2004; 89(9):4545-4552.
[CrossRef]
27. Mignot M, Skinner DC. Colocalization of GH, TSH and prolactin, but not ACTH, with betaLHimmunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell Tissue Res 2005; 319(3):413-421.
[CrossRef]
28. Pellegrini I, Rasolonjanahary R, Gunz G, Bertrand P, Delivet S, Jedynak CP et al. Resistance to bromocriptine in prolactinomas. J Clin Endocrinol Metab 1989; 69(3):500-509.
[CrossRef]
29. Trouillas J, Chevallier P, Remy C, Rajas F, Cohen R, Calle A et al. Differential actions of the dopamine agonist bromocriptine on growth of SMtTW tumors exhibiting a prolactin and/or a somatotroph cell phenotype: relation to dopamine D2 receptor expressi
[CrossRef]
30. Jaquet P, Ouafik L, Saveanu A, Gunz G, Fina F, Dufour H et al. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas. J Clin Endocrinol Metab 1999; 84(9):3268-3276.
[CrossRef]
31. Caccavelli L, Morange-Ramos I, Kordon C, Jaquet P, Enjalbert A. Alteration of G alpha subunits mRNA levels in bromocriptine resistant prolactinomas. J Neuroendocrinol 1996; 8(10):737-746.
[CrossRef]
32. Trifanescu R, Karavitaki N, Coculescu M, Turner HE, Wass JAH. What is the final outcome in patients with macroprolactinoma resistant to dopamine agonists? 24th Joint Meeting of the British Endocrine Societies, 4-6 April 2005, Harrogate, U.K, Endocrine A