- Login
- Register
- Home/Current Issue
- About the journal
- Editorial board
- Online submission
- Instructions for authors
- Subscriptions
- Foundation Acta Endocrinologica
- Archive
- Contact
Romanian Academy
The Publishing House of the Romanian Academy
ACTA ENDOCRINOLOGICA (BUC)
The International Journal of Romanian Society of Endocrinology / Registered in 1938in Web of Science Master Journal List
Acta Endocrinologica(Bucharest) is live in PubMed Central
Journal Impact Factor - click here.
-
General Endocrinology
Leonte L, Coculescu M, Radian S, Fica S, Caragheorgheopol A, Marinescu B, Bohaltea LC, Grigorescu F
Anti-Mullerian hormone (AMH) as a useful marker in diagnosis of polycystic ovary syndromeActa Endo (Buc) 2007 3(1): 1-12 doi: 10.4183/aeb.2007.1
AbstractThe mechanism underlying anovulation in the polycystic ovary syndrome (PCOS) remains unclear, although an excessive number of small antral follicles at ultrasound scans and discrepancies with selected follicles sustain the hypothesis of altered follicular development. Anti-M?llerian (AMH) hormone is a member of TGF-b super family of growth factors produced by granulosa cells of pre- and small-antral follicle. The 2 to 3 fold increase in the number of growing follicles in the ovary from PCOS women is reflected by an increase in serum concentration of AMH and thus, this hormone may be a good marker of PCOS.\r\nAim. This study was intended to implement ultra-sensitive ELISA measurement of serum AMH from PCOS women and search for a potential correlation with clinical and laboratory parameters.\r\nSubjects and methods. Sera from patients with PCOS (n = 42) and control women (n = 22) were used for ELISA measurement of AMH (AMH-EIA, Beckman Coulter) with sensitivity of 0.7 pmol/L.\r\nResults. We found a serum concentration of AMH almost 3 folds higher in patients with PCOS compared to controls (73.7 ? 7.5 vs. 25.7 ? 3.9 pmol/L, P < 0.0001). Differences were even higher in lean subjects. A positive correlation was found between total testosterone and LH levels, but not with serum FSH or insulin. Moreover, AMH concentration was correlated to more hyperandrogenic PCOS and with amenorrhea, and thus to the severity of the syndrome.\r\nConclusion. Measurement of serum AMH may be used as a valuable marker for PCOS to confirm diagnosis and evaluate the extent of follicular dysfunction in relation with hyperandrogenism and menstrual disturbances. -
Case Report
Coculescu M, Ciubotaru V, Capatina C, Burcea A, Radian S, Badiu C, Dumitrascu A, Stancu C
TSH-secreting pituitary adenoma producing severe thyrotoxicosis with cachexia and atrial fibrillation, completely cured after pituitary surgeryActa Endo (Buc) 2008 4(1): 77-85 doi: 10.4183/aeb.2008.77
AbstractA 63-years old patient with severe thyrotoxicosis with cachexia and high frequency atrial fibrillation showed an inadequate secretion of TSH. A pituitary macroadenoma was revealed by computed tomography. Acute octreotide administration decreased serum TSH\r\nfrom 2.48 mU/mL to 0.06 mU/mL and T3 from 3.1 ng/mL to normal values (0.93 ng/mL) in 3 days; at the same time serum T4 remained unchanged (raised).The response to octreotide supported the diagnosis of TSH-secreting adenoma. T3 suppression test is no longer useful at present for diagnosis.Administration of long- acting somatostatin analogues (lanreotide) together with antithyroid drugs (ATD) was initially necessary. However, after removal of pituitary tumor the clinical symptoms (including atrial fibrillation) disappeared.ATD administration was no longer necessary, nor was octreotide or lanreotide. Immunohistochemistry certified that the pituitary tumor was a pure thyrotropinoma (without plurihormonal expression). Complete cure of severe thyrotoxicosis due to a TSH-secreting pituitary adenoma by pituitary surgery is possible. Thyroidectomy is not indicated. -
Endocrine Care
Niculescu DA, Botusan I, Rasanu C, Radian S, Filip O, Coculescu M
Central sleep apnea in acromegaly versus obesityActa Endo (Buc) 2005 1(1): 79-88 doi: 10.4183/aeb.2005.79
Abstract ReferencesINTRODUCTION: Sleep apnea syndrome is a common manifestation of acromegaly. Although the obstructive type of apnea was thought to be predominant there are some reports suggesting that central apneic episodes show a high rate and are related to abnormalities of central respiratory control.\r\nAIM: The present study determines the presence and severity of central sleep apnea syndrome in patients with acromegaly compared with obese subjects.\r\nMATERIALS AND METHODS: 35 consecutive acromegalic patients (min GH (growth hormone) during oral glucose tolerance test (OGTT) 6.6 ng/ml) and 19 obese subjects (BMI=44 kg/m2) were polisomnographically recorded between 10 p.m and 6 a.m. Sleep and respiratory disturbances were manually staged according to standard criteria.\r\nRESULTS: The prevalence of sleep apnea syndrome in acromegaly group was 45.7% (16 out of 35 patients). The median of minimum GH level during OGTT was 8.3 ng/ml in apnea group and 5.16 ng/ml in nonapneic group (p>0.05). In acromegaly group with severe sleep apnea syndrome central apnea rate was greater than 10% in 6 out of 7 subjects with REM sleep and in 7 out of 10 with NREM sleep whereas in obesity group this percent was present in 6 out of 18 (REM sleep), respectively 7 out of 19 (NREM sleep).\r\nCONCLUSIONS: The study confirms the high prevalence of sleep apnea in acromegaly. GH serum level is not an indicator for the presence and severity of sleep apnea. Although the total time of central apnea per hour of sleep did not differ between the two groups, the percent (rate) of central apnea was significantly greater in acromegaly group.1. Laroche C, Festal G, Poenaru S, Caquet R, Lemaigre D, Auperin A. [A case of periodic respiration in a patient with acromegaly]. Ann Med Interne (Paris) 1976; 127(5):381-385.2. Roxburgh F, Collis A. Notes on a case of acromegaly. Br Med J 1886; 2:63-65.3. Grunstein RR, Ho KY, Sullivan CE. Sleep apnea in acromegaly. Ann Intern Med 1991; 115(7): 527-532.4. Pelttari L, Polo O, Rauhala E, Vuoriluoto J, Aitasalo K, Hyyppa MT et al. Nocturnal breathing abnormalities in acromegaly after adenomectomy. Clin Endocrinol (Oxf) 1995; 43(2):175-182. [CrossRef]5. Rosenow F, Reuter S, Deuss U, Szelies B, Hilgers RD, Winkelmann W et al. Sleep apnoea in treated acromegaly: relative frequency and predisposing factors. Clin Endocrinol (Oxf) 1996; 45(5):563-569. [CrossRef]6. Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 2004; 25(1):102-152. [CrossRef]7. Grunstein RR, Ho KY, Berthon-Jones M, Stewart D, Sullivan CE. Central sleep apnea is associated with increased ventilatory response to carbon dioxide and hypersecretion of growth hormone in patients with acromegaly. Am J Respir Crit Care Med 1994; 150(28. Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects. Washington, DC: National Institutes of Health, 1968.9. American Academy of Sleep Medicine. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999; 22(5):610. Kryger M. Monitoring Respiratory and Cardiac Function. In: Kryger M, Roth T, Dement W, editors. Principles and Practice of Sleep Medicine. Philadelphia: W.B. Saunders, 2000: 1217-1230.11. Dostalova S, Sonka K, Smahel Z, Weiss V, Marek J, Horinek D. Craniofacial abnormalities and their relevance for sleep apnoea syndrome aetiopathogenesis in acromegaly. Eur J Endocrinol 2001; 144(5):491-497. [CrossRef]12. Hochban W, Brandenburg U. Morphology of the viscerocranium in obstructive sleep apnoea syndrome?cephalometric evaluation of 400 patients. J Craniomaxillofac Surg 1994; 22(4):205-213. [CrossRef]13. Hochban W, Ehlenz K, Conradt R, Brandenburg U. Obstructive sleep apnoea in acromegaly: the role of craniofacial changes. Eur Respir J 1999; 14(1):196-202. [CrossRef]14. Herrmann BL, Wessendorf TE, Ajaj W, Kahlke S, Teschler H, Mann K. Effects of octreotide on sleep apnoea and tongue volume (magnetic resonance imaging) in patients with acromegaly. Eur J Endocrinol 2004; 151(3):309-315. [CrossRef]15. Isono S, Saeki N, Tanaka A, Nishino T. Collapsibility of passive pharynx in patients with acromegaly. Am J Respir Crit Care Med 1999; 160(1):64-68.16. Weiss V, Sonka K, Pretl M, Dostalova S, Klozar J, Rambousek P et al. Prevalence of the sleep apnea syndrome in acromegaly population. J Endocrinol Invest 2000; 23(8):515-519.17. Cadieux RJ, Kales A, Santen RJ, Bixler EO, Gordon R. Endoscopic findings in sleep apnea associated with acromegaly. J Clin Endocrinol Metab 1982; 55(1):18-22. [CrossRef]18. Lindgren AC, Hellstrom LG, Ritzen EM, Milerad J. Growth hormone treatment increases CO(2) response, ventilation and central inspiratory drive in children with Prader-Willi syndrome. Eur J Pediatr 1999; 158(11):936-940. [CrossRef]19. Grunstein RR, Ho KY, Berthon-Jones M, Stewart D, Sullivan CE. Central sleep apnea is associated with increased ventilatory response to carbon dioxide and hypersecretion of growth hormone in patients with acromegaly. Am J Respir Crit Care Med 1994; 150(220. Llona I, Ampuero E, Eugenin JL. Somatostatin inhibition of fictive respiration is modulated by pH. Brain Res 2004; 1026(1):136-142. [CrossRef]21. Chen ZB, Engberg G, Hedner T, Hedner J. Antagonistic effects of somatostatin and substance P on respiratory regulation in the rat ventrolateral medulla oblongata. Brain Res 1991; 556(1):13-21. [CrossRef]22. Pedersen ME, Dorrington KL, Robbins PA. Effects of somatostatin on the control of breathing in humans. J Physiol 1999; 521 Pt 1:289-297. [CrossRef]23. Lopata M, Freilich RA, Onal E, Pearle J, Lourenco RV. Ventilatory control and the obesity hypoventilation syndrome. Am Rev Respir Dis 1979; 119(2 Pt 2):165-168.24. Zwillich CW, Sutton FD, Pierson DJ, Greagh EM, Weil JV. Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome. Am J Med 1975; 59(3):343-348. [CrossRef]25. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334(5):292-295. [CrossRef]26. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D, Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 1996; 2(5):589-593. [CrossRef]27. Fruhbeck G, Jebb SA, Prentice AM. Leptin: physiology and pathophysiology. Clin Physiol 1998; 18(5):399-419. [CrossRef]28. Lundberg JM, Pernow J, Fried G, Anggard A. Neuropeptide Y and noradrenaline mechanisms in relation to reserpine induced impairment of sympathetic neurotransmission in the cat spleen. Acta Physiol Scand 1987; 131(1):1-10. [CrossRef]29. Mann K, Benkert O, R?schke J. Effects of corticotropin-releasing hormone on respiratory parameters during sleep in normal men. Exp Clin Endocrinol 1994; 103:233-240. [CrossRef]30. O?donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR et al. Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 1999; 159(5 Pt 1):1477-1484.31. Shimura R, Tatsumi K, Nakamura A, Kasahara Y, Tanabe N, Takiguchi Y et al. Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome. Chest 2005; 127(2):543-549. [CrossRef]32. Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 1982; 79(18):5485-5489. [CrossRef]33. Clark JT, Karla PS, Crowley WR, Karla SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984; 115:427-429. [CrossRef]34. Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986; 7(6):1189-1192. [CrossRef]35. Thorsell A, Heilig M. Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 2002; 36(2-3):182-193. [CrossRef]36. Nam SY, Kratzsch J, Kim KW, Kim KR, Lim SK, Marcus C. Cerebrospinal fluid and plasma concentrations of leptin, NPY, and alpha-MSH in obese women and their relationship to negative energy balance. J Clin Endocrinol Metab 2001; 86(10):4849-4853. [CrossRef]37. Harfstrand A. Brain neuropeptide Y mechanisms. Basic aspects and involvement in cardiovascular and neuroendocrine regulation. Acta Physiol Scand Suppl 1987; 565:1-83.38. Morton KD, McCloskey MJ, Potter EK. Cardiorespiratory responses to intracerebroventricular injection of neuropeptide Y in anaesthetised dogs. Regul Pept 1999; 81(1-3):81-88. [CrossRef] -
Case Report
Baciu I, Radian S.,Capatina C., Botusan I., Aflorei D, Stancu C., Dumitrascu A., Ciubotaru V., Coculescu M
The p.R16H (C.47G>A) AIP gene variant in a case with invasive non-functioning pituitary macroadenoma and Screening of a Control CohortActa Endo (Buc) 2013 9(1): 97-108 doi: 10.4183/aeb.2013.97
AbstractBackground: Germline aryl hydrocarbon receptor-interacting protein (AIP) mutations are found in familial isolated pituitary adenoma syndrome (FIPA) families and in a small number of sporadic pituitary adenoma (PA) patients. Although the tumorigenic mechanisms of AIP mutations are unclear, truncating mutations are considered pathogenic, but missense mutations are difficult to evaluate. p.R16H (c.47G>A) is a controversial AIP variant of unknown significance. Aim: To describe a new PA case associated with AIP p.R16H. Patients and methods: One AIP p.R16H non-functioning pituitary adenoma (NFPA) case identified by mutation sequencing screening of sporadic PA patients; 108 controls were screened for p.R16H. Results: The 38 yrs. old male NFPA patient had no family history of PA and harboured a heterozygous p.R16H variant. The proband and two brothers presented severe intellectual disability. Severe visual impairment was the initial symptom and clinical, biochemical and imaging examination demonstrated a large NFPA invading the right cavernous sinus. After transsphenoidal debulking, the remaining tumor continued growth. One of proband’s sisters was negative for p.R16H. Among controls, we identified one heterozygous p.R16H carrier, presenting a thyroid follicular neoplasm. Loss of heterozygosity analysis of the pituitary and thyroid tumors was not performed. Conclusions: We report two new occurrences of AIP p.R16H, associated with a NFPA and with a thyroid tumor. The NFPA patient was young and presented an invasive macroadenoma, features typical of AIP-mutated patients. Because the association between p.R16H and PAs has not been conclusively established, further research of p.R16H is warranted, in view of its implications for AIP genetic testing. -
Book Review
Radian S
EndocrinologyActa Endo (Buc) 2006 2(1): 123-123 doi: 10.4183/aeb.2006.123
Abstract- -
General Endocrinology
Radian S, Bensaada M, Lautier C, Moles JP, Grigorescu F, Gussi I, Badiu C, Nastasia S, Hudita D, Leonte L, Marinescu B, Coculescu M
Molecular genetics strategies to identify vasotocin coding sequences in humans: family-specific approach using genomic DNA and fetal tissues mRNAsActa Endo (Buc) 2005 1(2): 131-144 doi: 10.4183/aeb.2005.131
Abstract ReferencesVertebrate nonapeptide neurohormones constitute an evolutionarily conserved family, involved in vital functions, such as hydro-osmotic balance regulation, reproduction and social behaviour. Two human members of this family are known, vasopressin (AVP) and oxytocin (OXT), with their highly homologous genes closely located on Chr 20p13. Presence of vasotocin (AVT) in man has been suggested, but remains controversial, and genetic evidence is lacking. AVT activity could be explained by the presence of a third distinct gene for AVT or an RNA-processing mechanism involving products of AVP and/or OXT genes. To test the first hypothesis, we developed bioinformatics and experimental approaches using genomic DNA and fetal tissues mRNAs. Family-specific primers for AVT and neurophysin were designed based on CODEHOP strategy and used in our experiments. Results of bioinformatics and genomic DNA experiments (family-specific and Alu step-out PCR) suggest there is no evidence for an AVT gene in the genome. RNA-based techniques 3?-RACE and Family-Specific Domain Restriction Fragment RTPCR provided evidence for new transcript species that could code for AVT. Further experiments will be needed to characterize them. We discuss potential mechanisms of AVT mRNA generation based on AVP and OXT mRNAs, by alternative splicing, heterologous transsplicing or RNA-editing. While all methods we developed proved feasible, current results suggest there is no AVT gene in the genome, but specific mRNAs could be present in fetal tissues. Their full characterization may potentially allow identification of vasotocin mRNA and shed light on a subject of fundamental scientific interest.1. Dale HH. Evidence concerning the endocrine function of the neurohypophysis and its nervous control. In: The Neurohypophysis, editor Heller HH. London: Butterworth?s, 1957, 1-9.2. Dantzer R. Vasopressin, gonadal steroids and social recognition. Prog Brain Res. 1998;119:409-14.3. Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides. 2004;25(9):1565-74. [CrossRef]4. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(7042):673-6. [CrossRef]5. Hoyle CH. Neuropeptide families and their receptors: evolutionary perspectives. Brain Res. 1999;848(1-2):1-25. [CrossRef]6. Sausville E, Carney D, Battey J.The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985;260(18):10236-41.7. Pavel, S. Arginine vasotocin as a pineal hormone. J. Neural. Transmission 1978; 13:135-155.8. Coculescu M, Pavel S. Arginine vasotocin-like activity of cerebrospinal fluid in diabetes insipidus. J Clin Endocrinol Metab. 1973;36(5):1031-2. [CrossRef]9. Catrina SB, Coculescu M, Andersson M. A chemical method to isolate hypothalamic nonapeptides by coupling cyst(e)in with bimane. J Cell Mol Med. 2001;5(2):195-7. [CrossRef]10. Badiu C, Coculescu M, Moller M. Arginine vasotocin mRNA revealed by in situ hybridization in bovine pineal gland cells. Cell Tissue Res. 1999;295(2):225-9. [CrossRef]11. Ervin MG, Amico JA, Leake RD, Ross MG, Robinson AG, Fisher DA. Arginine vasotocin and a novel oxytocin-vasotocin-like material in plasma of human newborns. Biol Neonate. 1988;53(1):17-22. [CrossRef]12. Pavel S. Evidence for the ependymal origin of arginine vasotocin in the bovine pineal gland. Endocrinology. 1971;89(2):613-4. [CrossRef]13. Pavel S, Dorcescu M, Petrescu-Holban R, Ghinea E. Biosynthesis of a vasotocin-like peptide in cell cultures from pineal glands of human fetuses. Science. 1973;181(106):1252-3. [CrossRef]14. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensusdegenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 1998;26(7):1628-35. [CrossRef]15. <http://blocks.fhcrc.org/blocks/codehop.html>16. Fuentes JJ, Pucharcos C, Pritchard M, Estivill X. Alu-splice PCR: a simple method to isolate exoncontaining fragments from cloned human genomic DNA. Hum Genet. 1997;101(3):346-50. [CrossRef]17. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995;23(6):1087 [CrossRef]18. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L, Chenchik A. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 1999;27(6):1558-60. [CrossRef]19. Michel G, Levy B, Chauvet MT, Chauvet J, Acher R. Complete amino acid sequence of goose VLDVneurophysin. Traces of a putative gene conversion between promesotocin and provasotocin genes. Int J Pept Protein Res. 1990;36(5):457-64. [CrossRef]20. Ruppert S, Scherer G, Schutz G. Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature. 1984 Apr 5-11;308(5959):554-7. [CrossRef]21. Pavel S. Evidence for the presence of lysine vasotocin in the pig pineal gland. Endocrinology. 1965 ;77(5):812-7. [CrossRef]22. Pavel S. Pineal vasotocin and sleep. Environmental Physiology. Vol. 18 in Advances in Physiological Sciences. Proceedings of the 28th International Congress of Physiological Sciences, Budapest, 1980. Obal, F., and G. Benedek, Eds. Budapest: Akademiai Ki23. Coculescu M, Serbanescu A, Temeli E. Influence of arginine vasotocin administration on nocturnal sleep of human subjects. Waking Sleeping. 1979;3(3):273-7.24. Mihai R, Coculescu M, Wakerley JB, Ingram CD. The effects of [Arg8]vasopressin and [Arg8]vasotocin on the firing rate of suprachiasmatic neurons in vitro. Neuroscience. 1994 ;62(3):783-92. [CrossRef]25. Lefebvre DL, Zingg HH. Novel vasopressin gene-related transcripts in rat testis. Mol Endocrinol. 1991;5(5):645. [CrossRef]26. Foo NC, Funkhouser JM, Carter DA, Murphy D. A testis-specific promoter in the rat vasopressin gene. J Biol Chem. 1994;269(1):65.27. Caudevilla C, Serra D, Miliar A, Codony C, Asins G, Bach M, Hegardt FG. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci U S A. 1998;95(21):12185-90. [CrossRef]28. Finta C, Zaphiropoulos PG. Intergenic mRNA molecules resulting from trans-splicing. J Biol Chem. 2002;277(8):5882-90. Epub 2001 Nov 28. [CrossRef]29. Mohr E, Peters A, Morris JF, Richter D. Somatic nonhomologous crossing-over between neuropeptide genes in rat hypothalamic neurons. Proc Natl Acad Sci U S A. 1994;91(24):11403-7. [CrossRef]30. Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY. Is abundant A-to-I RNA editing primate-specific? Trends Genet. 2005;21(2):77-81. [CrossRef]31. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF. Systematic identification of abundant Ato- I editing sites in the human transcriptome. Nat Biotechnol [CrossRef] -
General Endocrinology
Catrina SB, Botusan I, Cucu C, Radian S, Caragheorgheopol A, Coculescu M
IGF-1 levels in the cerebrospinal fluid in patients with acromegalyActa Endo (Buc) 2008 4(2): 143-150 doi: 10.4183/aeb.2008.143
AbstractIGF-I (Insulin like growth factor-I) plays a definitive role in the central nervous system (CNS) by modulating neuronal regeneration and survival. The local production of IGF-I in CNS has been demonstrated, but the contribution of circulating IGF-I transported through blood-brain barrier (BBB) has been just suggested in animals. There is currently no data available concerning IGF-I transport in CNS in humans. In order to investigate the passage of IGF-I over BBB in humans we have simultaneously measured the IGF-I and GH levels in serum and CSF in 25 patients with active acromegaly. IGF-I and GH levels in CSF were lower than in serum (2.2 ? 0.24 ng/mL vs 686.6 ? 46.83 ng/mL for IGF-I and 2.13 ? 0.627 mU/l vs 58.8 ? 15.86 mU/L for GH). However, both IGF-I and GH serum levels correlated with their CSF levels (r= 0.4, p<0.05 for IGF-I and r= 0.651, p= 0.006 for GH), suggesting that BBB is permeable for both hormones. In conclusion, we demonstrate the correlation of the IGF-I levels in serum and CSF, providing indirect evidence for IGF-I passage through BBB. -
Book Review
Radian S
Genomics in EndocrinologyActa Endo (Buc) 2009 5(1): 149-149 doi: 10.4183/aeb.2009.149
-
Book Review
Radian S
Genetics of Diabetes. The Truth UnveiledActa Endo (Buc) 2010 6(2): 289-289 doi: 10.4183/aeb.2010.289
-
Images in Endocrinology
Stancu C, Radian S, Stanescu B, Ioachim D, Terzea D, Coculescu M
Follicular thyroid cancer on remnant lobeActa Endo (Buc) 2008 4(3): 353-353 doi: 10.4183/aeb.2008.353